고등수학(2)
-
[기하] 1 - 03. 타원의 방정식
수악중독님의 교재를 참고하여 작성하였습니다. 학생이다 보니 틀린점이 있으면 마음껏 지적해주세요 수식은 mathjax api를 사용하였습니다 이번엔 타원에 대하여 알아보도록 하자 타원의 정의 타원 : 두 초점 $F$와 $F'$의 거리의 합이 일정한 점들의 집합 장축 : 두 초점을 잇는 축 단축 : 두 초점에 수직이 되는 축 타원의 중심 : 단축과 장축이 서로 수직으로 만나는 교점 타원의 방정식 아까 배운 타원의 성질을 이용하여 타원의 방정식을 유도해 보도록 하자. 두 초점 $F(c,0), F'(-c,0)$으로 부터의 거리의 합이 2a일때, 선분 PF + PF' = 2a 이므로 $\sqrt{(x-c)^2 + y^2}$ + $\sqrt{(x+c)^2 + y^2}$ = $2a$ 두 점 사이의 거리 즉 선분의 길..
2020.02.03 -
[기하] 1 - 02. 포물선의 평행이동
저번 포스트에서 배운 포물선의 방정식을 평행이동 시켜보자. 고1때 배운 방정식의 평행이동을 포물선의 방정식에 그대로 대입하면 된다. 포물선의 평행이동 포물선 y^2 = 4px에서, x축으로 a만큼, y축으로 b만큼 이동하면 위의 그림과 같은 포물선이 나오게 된다. 많은 함수에다가 평행이동을 적용시켰듯이 포물선도 마찬가지로 단순하게 생각하면 되는것 이다. 간단한 이야기이니, 바로 예제를 들여다 보도록 하자. 이 예제를 통하여 방정식을 평행이동한 포물선의 식으로 바꿔보는 연습을 해보자. 예제 #1 다음 방정식을 평행이동한 포물선꼴로 바꾸어 초점의 값과 준선의 방정식을 구해보자 y가 이차항이니 y^2 = ... 꼴로 바꾸면 된다. 먼저, (y-2)^2 완전제곱식으로 바꾸기 위하여 16에서 4를 떼온다. 그러면..
2020.01.30