타원의 방정식(2)
-
[기하] 1 - 03. 타원의 방정식
수악중독님의 교재를 참고하여 작성하였습니다. 학생이다 보니 틀린점이 있으면 마음껏 지적해주세요 수식은 mathjax api를 사용하였습니다 이번엔 타원에 대하여 알아보도록 하자 타원의 정의 타원 : 두 초점 $F$와 $F'$의 거리의 합이 일정한 점들의 집합 장축 : 두 초점을 잇는 축 단축 : 두 초점에 수직이 되는 축 타원의 중심 : 단축과 장축이 서로 수직으로 만나는 교점 타원의 방정식 아까 배운 타원의 성질을 이용하여 타원의 방정식을 유도해 보도록 하자. 두 초점 $F(c,0), F'(-c,0)$으로 부터의 거리의 합이 2a일때, 선분 PF + PF' = 2a 이므로 $\sqrt{(x-c)^2 + y^2}$ + $\sqrt{(x+c)^2 + y^2}$ = $2a$ 두 점 사이의 거리 즉 선분의 길..
2020.02.03 -
[기하] 1 - 01. 이차곡선_포물선의 방정식
포물선의 정의 평면 위에서, 움직이지 않는 정직선 L과, L위에 있지 않은 초점 F에서 l과 f사이의 거리가 같은 점들의 집합을 포물선 이라 한다. 또한 포물선과 가로축의 교점을 포물선의 꼭짓점이라 부른다. 포물선의 방정식 먼저 위에서 말했듯, 포물선은 정직선(준선)과, 초점과의 거리가 같은 점들의 집합이다. 그렇다면 성질에 의해 직선PH과 직선PF의 길이는 같다. 먼저 PH의 길이를 방정식으로 나타내보자, (선과 점까지의 거리)준선과 x만큼 떨어져 있으므로 |x-(-p)|로 나타낼 수 있다. PF의 길이는 두점 사이의 거리 공식을 이용하여 로 나타낼 수 있다. 직선PH과 직선PF의 길이는 같기 때문에, 두개의 방정식은 같다. 양변을 정리해보면 y^2 = 4px 라는 결론이 나온다. 준선이 y= -p일 ..
2020.01.24